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Abstract

Plane strain slip line _elds\ in which plasticity does not fully surround the crack tip have been developed
for mode I and mixed mode I:II cracks under contained yielding[ Analytical solutions have been assembled
using slip line theory for the plastic sectors and semi!in_nite wedge solutions for the elastic sectors[ These
solutions are compared with _nite element solutions based on modi_ed boundary layer formulations[ The
analytical solutions agree well with numerical solutions\ and form a family of _elds with incomplete plasticity
around the crack tip[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Insight into the nature of plane strain elasticÐplastic crack tip _elds can be obtained by expressing
the local crack tip deformation as plane slip line _elds "Hill\ 0849#[ For mode I deformation\ Rice
"0863# and Rice and Tracey "0863# have demonstrated the relevance of the Prandtl _eld\ shown in
Fig[ 0\ to small scale yielding[ If plasticity surrounds the crack tip\ the Prandtl _eld is the only
possible non!trivial _eld which exhibits full continuity of tractions around the tip[ The same _eld
arises as an example of the dominant singularity solutions of Hutchinson "0857a\ b# and Rice and
Rosengren "0857# for power hardening materials in the limit of non!hardening plasticity[ Although
the HRR solutions describe the nature of the dominant singularity\ higher order terms are now
recognised to have an important e}ect on the constraint of plane strain crack tip _elds "Betego�n
and Hancock\ 0880 ^ O|Dowd and Shih\ 0880a\ b#[ The HRR _eld is thus not the only possible
crack tip _eld\ but should be regarded as an important limiting case of a family of _elds which
arise when higher order terms are insigni_cant[

Interest is now focused on contained yielding\ when local crack tip plasticity is completely
contained within an outer elastic _eld[ In these circumstances the level of constraint within the
plastic zone depends on the nature of the non!singular terms in the outer elastic _eld[ This _eld
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Fig[ 0[ The HRR mode I slip line _eld[

can be described as an asymptotic series using cylindrical coordinates "r\ u# centred at the crack
tip following Williams "0848#[

sij � Aij"u#r−0:1¦Bij"u#¦Cij"u#r−0:1¦= = = "0#

The _rst term in the expression is singular at the crack tip whereas the remaining terms are _nite
and bounded[ This allows the dominant elastic singularity to be characterized by the stress intensity
factor[

sij �
K

z1pr
fij"u# "1#

In contrast\ the second term is non!singular and corresponds to a uniaxial stress parallel to the
crack which Rice "0863# has denoted the T stress[

$
s00 s01

s10 s11%�
K

z1pr $
f00"u# f01"u#

f10"u# f11"u#%¦$
T 9

9 9% "2#

Larsson and Carlsson "0862# have demonstrated that the T stress has a signi_cant e}ect on the
shape of the crack tip plastic zone and the stresses within the plastic zone[ Detailed investigations
of the non!hardening problem have been presented by Du and Hancock "0880# using _nite element
analysis methods based on modi_ed boundary layer formulations[ As T is proportional to the
applied load\ the T � 9 _eld is signi_cant in the sense that it is the _eld which applies at very small
load levels for all geometries and is thus the small scale yielding _eld[ In the non!hardening case\
plasticity only encompasses the tip for closely de_ned conditions in which T is positive "tensile#[
When T is negative "compressive#\ plasticity does not surround the tip and an elastic sector appears
on the crack ~ank giving rise to an incomplete Prandtl _eld[ The possibility of _elds with elastic
sectors was _rst discussed by Nemat!Nasser and Obata "0873#[ In mode I a signi_cant observation
of Du and Hancock "0880#\ is that incomplete plasticity is associated with a compressive T stress
and leads to a loss of crack tip constraint[ Parallel experimental work has demonstrated that this
leads to an enhanced level of toughness for both cleavage and ductile tearing[ "Betego�n and
Hancock\ 0880 ^ Hancock et al[\ 0882 ^ Kirk et al[\ 0882#[

In mode II\ the slip line _eld corresponding to the HRR singularity has been constructed by
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Fig[ 1[ The HRR mode II slip line _eld[

Hutchinson "0857b#\ and is shown in Fig[ 1[ Mixed mode I:II _elds have been constructed by Shih
"0863#\ on the assumption that plasticity entirely surrounds the crack tip[ With the exception of
near mode II _elds\ these require a discontinuity in radial stress in a sector trailing the crack front[
In contrast Hancock et al[ "0886# have discussed _elds which di}er from those constructed by Shih
"0863# in that plasticity does not surround the crack tip and\ with the exception of _elds close to
mode II _eld\ an elastic wedge appears on the crack ~anks[

The present paper constructs analytical solutions for mode I and mixed mode I:II _elds in which
plasticity does not surround the crack tip[ Without loss of generality these _elds are taken to
comprise plastic and elastic sectors "Nemat!Nasser and Obata\ 0873#[ The stresses within the elastic
sectors are determined under incompressible deformation conditions by reference to solutions for
a semi!in_nite elastic wedge\ while the plastic sectors are discussed in terms of plane strain slip line
_elds[ Initially the structure of these sectors is discussed before sectors are assembled to give the
complete analytical solutions[ To verify these analytical solutions\ numerical solutions have been
obtained by using boundary layer formulations[

1[ Analytical solutions

1[0[ Stress distribution in plastic sectors

The stresses within plastic sectors at the crack tip can be conveniently represented by slip line
_elds as discussed by Rice "0863#[ The slip lines are the directions of maximum shear\ on which
the shear stress is the yield stress in shear\ k[ The value of k can be related to the uniaxial tensile
stress s9 by the von Mises criterion k � s9:z2[ In plane strain conditions the Mises yield criterion
can be written in cylindrical co!ordinates\ "r\ u# centred at the crack tip ]

"suu−srr#1¦3s1
ru � 3k1 "3#

The assumption that the crack tip stresses are _nite leads to the relationship ]

r
1sij

1r
: 9 as r : 9 "4#

This allows the equilibrium equations to be reduced to ]
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1sru

1u
¦srr−suu � 9 "5[0#

1suu

1u
¦1sru � 9 "5[1#

Di}erentiating the yield criteria\ and combining with the reduced equilibrium equations "5[0#
and "5[1# for incompressible deformation gives the relation identi_ed by Rice "0863# ]

1sm

1u
=
1sru

1u
� 9 "6#

where sm denotes the mean stress[ This leads to two possible forms\ either ]

1sm

1u
� 9\

1sru

1u
� 9 "7[0#

or\

1sru

1u
� 9\

1sm

1u
� 9 "7[1#

The _rst possibility\ given by eqn "7[0#\ corresponds to sectors in which the mean stress "sm#
does not change with angle\ and the slip lines are straight corresponding to a constant stress sector[
The second possibility corresponds to the situation in which the mean stress "sm# changes linearly
with angle and is represented as a centred fan[

1[1[ Stress distribution in elastic sectors

In all the cases discussed in the present work\ elastic sectors lie on traction free crack ~anks
"u � 2p\ sru � suu � 9#[ The stress _eld within an elastic sector on a traction free crack ~ank can
be expressed analytically by reference to the solution for a semi!in_nite elastic wedge\ loaded by
constant surface tractions "Timoshenko and Goodier\ 0869 ^ Zywicz and Parks\ 0881#[ It is now
convenient to use two co!ordinate systems ] u is measured anticlockwise from a plane directly
ahead of the crack and a right handed rule is used for stresses ^ g is measured clockwise from the
crack ~anks so that g � p−u and a left handed rule is used for stresses as illustrated schematically
in Fig[ 2[ Within the elastic wedge the stresses can now be written ]

Fig[ 2[ An elastic wedge loaded by surface tractions H and K[



J[ Li\ J[W[ Hancock : International Journal of Solids and Structures 25 "0888# 600Ð614 604

suu � 1A"cos 1g−0#¦1B"sin 1g−1g# "8[0#

sru � 1A sin 1g−1B"cos 1g−0# "8[1#

srr � −1A"cos 1g¦0#−1B"1g¦sin 1g# "8[2#

where

A �
H"cos 18−0#¦K"sin 18−18#

3"0−cos 18−8 sin 18#
"09[0#

B �
H sin 18−K"cos 18−0#
3"0−cos 18−8 sin 18#

"09[1#

Here H and K are the hoop or shear stresses on one side of the wedge as illustrated in Fig[ 2\ where
A and B are constants[ The angular span of the wedge is denoted 8[

1[2[ Assembly of the sectors

Mode I[ Guided by the form of the family of mode I slip line _eld discussed by Du and Hancock
"0880# the sectors can now be assembled[ The mode I symmetry condition requires that the slip
lines cross the symmetry axis directly ahead of the crack at 2p:3\ corresponding to a constant
stress sector[ If continuity of stress is assumed\ this sector must have a total angular span p:1\
leading to a centred fan whose angular span is at the present time not determined[ The equilibrium
equations allow a jump in the radial stress but demand continuity of the hoop and shear stresses[
The jump in radial stress can be determined from the allowable two roots of the plane strain yield
criterion s¦

rr and s−
rr "Shih\ 0863#[ The allowable stress discontinuity is ]

"s¦
rr −s−

rr # � 3zk1−s1
ru "00#

For a centred fan adjoining an elastic\ or constant stress sector\ sru � k\ there can thus be no
stress jump\ and full continuity of all the stress components is required[ Compatibility conditions
are satis_ed across the boundary as both hoop and radial strains are zero for incompressible
deformation in the two types of sector[ In this case\ K is\ therefore\ equal to the yield stress in
shear\ k\ and the value of H can be obtained by equating the hoop stress and radial stress on the
boundary from eqns "8[0# and "8[2# ]

H �
18k cos 18−k sin 18

0−cos 18
"01[0#

K � k "01[1#

The sectors can now be assembled by selecting a value for the angular span of the elastic wedge\
8[ Equations "01[0#Ð"01[1# de_ne the constants H and K\ which can be used in equations "8[0#Ð
"8[2#[

The stresses in the plastic sectors can be obtained from the Hencky equations "Hill\ 0849#\ which
are the equations of equilibrium referred to the curvi!linear slip lines[ The stresses within the fan
can be expressed in terms of the angular span of the elastic sector "8# and the hoop stress "H# on
the boundary between fan and elastic sector as shown in Fig[ 2[
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suu � srr � szz � sm � 1k"p−8−u#−H "02[0#

sru � k "02[1#

The stresses within the constant stress sector are ]

suu � k"cos 1u−18¦2
1
p#−H "03[0#

srr � k"−cos 1u−18¦2
1
p#−H "03[1#

sru � k sin 1u "03[2#

szz � sm � k"2
1
p−18#−H "03[3#

These solutions are valid in the range p:3 ¾ 8 ¾ 2p:3[ Outside this range\ the yield criterion is
violated in any postulated elastic sector[

Alternatively\ the sectors can be assembled by selecting a value of the constraint parameter\ Q[
Following O|Dowd and Shih "0880#\ the stress _elds can be characterised by a constraint parameter\
Q ]

sm � sSSY
m ¦z2kQ "04#

here the superscript SSY denotes the small scale yielding "T � 9# _eld in which the hoop stress
directly ahead of the crack is 1[72s9 while the corresponding Prandtl value is 1[86s9[ The small
di}erence between the small scale yielding and the HRR stresses allows eqn "04# to be approximated
as ]

sm � sHRR
m ¦z2kQ "05#

The value of Q depends on the elastic wedge angle\ and can be determined by combining eqns
"03[3#\ "01[0# and "05# ]

Q � 0
p

1
−0−

18−sin 18

1−cos 18 1>z2 "06#

The complete stress _eld is then determined for the appropriate elastic wedge angle as already
described[ Figure 3 shows the variation of Q with the elastic wedge angle\ 8\ in the range
34> ¾ 8 ³ 024>[ When 8 � 34>\ the stress distribution around the crack tip is identical to the fully
constrained "HRR# _eld[

Fig[ 3[ The variation of the constraint parameter\ Q\ with elastic wedge angle[
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Mixed Mode[ Under mixed mode loading\ comprising combinations of mode I and mode II\ the
nature of the remote elastic _eld can be de_ned by an elastic mixity parameter introduced by Shih
"0863#[

Mel �
1
p

tan−0 0
KI

KII1�
1
p

tan−0 6limr:9 $
suu"r\ 9#
sru"r\ 9#%7 "07#

The elastic mixity de_nes the ratio of tension to shear in the remote elastic _eld and also directly
ahead of the crack in the fully elastic case[ However when crack tip plasticity occurs\ the ratio of
tension to shear directly ahead of the crack is de_ned by a plastic mixity factor[

Mp �
1
p

tan−0 6limr:9 $
suu"r\ 9#
sru"r\ 9#%7 "08#

The elastic and plastic mixities are in general not identical[ The mixed mode slip line _elds under
small scale yielding have been determined by Hancock et al[ "0886# for compressible elastic
deformation[ The _elds are closely similar to those determined in the present work which are
illustrated in Fig[ 4[

These _elds can be understood by imagining that the constant stress sector ahead of the crack
in mode I loading rotates as the mode II loading is applied and the elastic wedge on one crack
~ank expands[ The slip line _elds can be expressed in terms of the plastic mixity by noting that the
plastic mixity de_nes the ratio of hoop to shear stress directly ahead of the crack[ This can be
determined by following the slip lines from a crack ~ank to the region directly ahead of the crack
within the plastic region[ Two possible conditions can be identi_ed[ In the _rst the fully plastic
side of the crack comprises a constant stress triangle\ a centred fan and part of a constant stress
diamond\ as illustrated in Fig[ 5"a#[ In this case\ the _eld is de_ned by the span of the centred fan\
a\ which is given by ]

Mp �
1
p

tan−0 0
cos 1a−0−1a

−sin 1a 1 a − p:3 "19#

Alternatively for lower values of mixity there may be two centred fans as illustrated in Fig[ 5"b#
in the fully plastic side[ In this case a relation is established between the span of the two fans and
the plastic mixity\ while a second relation ensures that "a¦b# is p:3[ This allows the plastic mixity
to be written as ]

Mp � −
1
p

tan−0 0
p

1
−3a−01 a ¾ p:3 "10#

In the upper half of the con_guration illustrated in Fig[ 5"a#\ the _eld is _xed by the span of the
elastic sector "8# and the part span of the diamond "d# where d � a−p:3[ Thus\ 8 and d can be
expressed in terms of the plastic mode[

Mp �
1
p

tan−0 6
ðsin 1d¦1"p−d#Ł"0−cos 18#−18¦sin 18

cos 1d"0−cos 18# 7 "11#

For low mixities\ such as the con_guration shown in Fig[ 5"b#\ the upper half of the _eld comprises



J[ Li\ J[W[ Hancock : International Journal of Solids and Structures 25 "0888# 600Ð614607

Fig[ 4[ Slip line _elds with incomplete plasticity for mixed mode loading[
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(a)

(b)

Fig[ 5[ Mixed mode slip line _elds[

a centred fan and an elastic sector[ This is _xed by the span of the elastic sector "f# which can be
given in terms of the plastic mixity[

Mp �
1
p

tan−0 01p−
18−sin 18

0−cos 18 1 "12#

For a given plastic mixity the stress _eld within the plastic sectors is de_ned from the Hencky
equations[ The sectors are thus fully de_ned in terms of the plastic mixity\ and can be assembled
to give full continuity of tractions[ The _elds for the four levels of mixity\ listed in Table 0 including
pure shear\ have been analysed[ The analytic solutions are shown in Fig[ 6 where they will be
compared with the _nite element solutions[

2[ Finite element solutions

To verify the analytical solutions\ a _nite element method has been used to obtain numerical
solutions[ Calculations have been performed in plane strain mode I loading with two levels of the
T stress\ T � 9 and T:s9 � −9[332[ The Cartesian displacements "u0\ u1# corresponding to the _rst
two terms of the Williams expression are ]
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Table 0
Mode mixity for a range of mixed mode
problems

Mel Mp

KI 0[99 0[99
KI � 1KII 9[60 9[70
KI � KII 9[49 9[58
KI � 9[4KII 9[29 9[49
KII 9[9 9[9

u0 � uK
0¦uT

0 � 0
r

1p1
0:1 K

1G
cos

u

1 $h−0¦1 sin1 0
u

11%¦
0¦h

7G
rT cosu "12[0#

u1 � uK
1¦uT

1 � 0
r

1p1
0:1 K

1G
sin

u

1 $h¦0−1 cos1 0
u

11%¦
h−2
7G

rT sin u "12[1#

where h � 2−3n[ G is the shear modulus and n is the Poisson|s ratio[ K and T are loading
parameters established by the far _eld conditions[

The crack!tip _elds for mode I and mixed mode problems have been modelled by using the
highly focused mesh shown in Fig[ 7[ Symmetry allowed the mode I problem to be represented by
a symmetric half[ The mesh is based on 13 rings of 13 isoparametric second!order hybrid elements
concentric with the crack tip[ The crack tip thus consists of 38 initially coincident\ but independent
nodes[ Displacement boundary conditions corresponding to eqns "12[0# and "12[1# were applied
to the outer circumference of the mesh corresponding to nodal displacements associated with mode
I and a compressive or zero T stress[

Mixed mode calculations have been performed under the levels of elastic mixity given in Table
0 where the corresponding levels of plastic mixity are also given[ The corresponding boundary
conditions have been applied to a full mesh around the crack tip as the mixed mode problem
cannot be simpli_ed by symmetry[ The displacements\ u0 and u1\ corresponding to the KI and KII

stress intensity factors have been applied on the outer boundary of the mesh[

u0 � uKI
0 ¦uKII

0 � 0
r

1p1
0:1 0

1G 6KI cos
u

1 $h−0¦1 sin1 0
u

11%¦KII sin
u

1 $h¦0¦1 cos1 0
u

11%7
u1 � uKI

1 ¦uKII
1 � 0

r
1p1

0:1 0
1G 6KI sin

u

1 $h¦0−1 cos1 0
u

11%−KII cos
u

1 $h−0−1 sin1 0
u

11%7"13#

In both the mode I and mixed mode cases\ calculations were performed using ABAQUS "0884#
with a non!hardening incompressible response[ The stress _eld at the crack tip was determined by
extrapolating the stress to the tip along radial lines such that the tip was approached asymptotically
from di}erent angles[ These numerical solutions have been interpreted as slip line _elds[ Firstly\
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Fig[ 6[ The asymptotic stress distribution around a crack tip for mixed mode loading[ The lines refer to the analytic
solutions and the data points to the _nite element solutions[

the angular span of the elastic sectors is determined from the angular range over which the yield
criterion is not satis_ed[ Secondly\ the span of the centred fan is determined from the angular
range over which the mean stress varies linearly with angle within a plastic sector[ Finally the
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Fig[ 7[ Focused mesh[

Fig[ 8[ Mode I slip line _elds with incomplete plasticity[

constant stress sector is identi_ed from the region in which the mean stress does not change with
angle[ These results are shown in the slip line _elds of Fig[ 8[ The angular variation of each stress
component and the Mises stress\ under mode I\ with T � 9 and −9[332s9\ and in mixed mode
loading are shown in Fig[ 09 and Fig[ 6[ These numerical results are compared with the analytical
solutions and it is clear that there is full agreement between the analytical solutions given by lines
and the numerical solutions given as data points in both mode I and mixed mode loading[
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Fig[ 09[ The asymptotic stress distribution around a crack tip for mode I loading[ The lines refer to the analytical
solutions and the data points to the _nite element solutions[

3[ Conclusions

Analytical solutions for Mode I and mixed mode I:II _elds have been constructed by using slip
line solutions for plastic sectors and semi!in_nite elastic wedge solutions for elastic sectors for
incompressible plane strain deformation[ The _elds\ which exhibit full continuity of tractions\ have
been veri_ed by numerical calculations based on modi_ed boundary layer formulations[ Unlike
the HRR _elds\ these _elds do not exhibit plasticity at all angles around the crack tip[ The di}erence
between these _elds and the HRR _eld can be attributed to the e}ect of higher order terms\ which
are signi_cant even in small scale yielding "T � 9#[ In mode I\ the HRR _elds is identi_ed as the
complete Prandtl _eld\ while in small scale yielding the Prandtl _eld is incomplete[ Similarly in
mixed!mode problems\ the HRR _elds exhibit plasticity at all angles around the crack tip "Shih\
0863#\ but the small scale yielding _elds analysed in the present work exhibit incomplete plasticity
except for the pure mode II case[ Although analytic solutions for these _elds have been assembled\
it has not proved possible to establish an analytic relation between the inner elasticÐplastic _eld
and the outer elastic _eld\ although this relationship has been established computationally[

In mode I the loss in constraint depends on the level of the compressive T stress which results
in the formation of an elastic wedge on the crack ~anks[ The angular span of the elastic wedge
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increases as T becomes more negative and corresponds to loss of constraint directly ahead of the
crack tip[ For a given value of the constraint parameter Q\ the span of the elastic sector can be
determined and the elastic and plastic sectors assembled around the crack tip to give the full
analytic solution[ These _elds form the basis of a two parameter\ constraint based characterization
of mode I _elds[

In mixed mode I:II _elds the constant stress sector ahead of the mode I "T � 9# crack rotates
with increasing mode II component\ and loses constraint[ Mixed mode _elds near mode I consist
of distortions of the mode I _eld in which the angular span of the crack ~ank elastic wedge
increases with decreasing elastic mixity[ Unlike the _elds discussed by Shih "0863#\ these _elds
exhibit full continuity of tractions around the crack tip[ Close to mode II\ plasticity surrounds the
crack tip\ contact is established with the mixed mode HRR _elds discussed by Shih "0863# and
_nally the mode II _eld discussed by Hutchinson is recovered[
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